Return to site

New paper! Single-trial characterization of neural rhythms: potentials and challenges

Kosciessa, J.Q., Grandy, T.H., Garrett, D.D., & Werkle-Bergner, M, (under review). Single-trial characterization of neural rhythms: potentials and challenges. BioRxiv. https://doi.org/10.1101/356089

The average power of rhythmic neural responses as captured by M/EEG/LFP recordings is a prevalent index of human brain function. Increasing evidence questions the utility of trial-/group averaged power estimates, as seemingly sustained activity patterns may be brought about by time-varying transient signals in each single trial. Hence, it is crucial to accurately describe rhythmic and arrhythmic neural responses on the single trial-level. However, it is less clear how well this can be achieved in empirical M/EEG/LFP recordings. Here, we extend an existing rhythm detection algorithm ("eBOSC") to systematically investigate boundary conditions for estimating neural rhythms at the single-trial level. Using simulations and resting and task-based EEG recordings from a micro-longitudinal assessment, we show that rhythms can be successfully captured at the single-trial level with high specificity, but that the quality of single-trial estimates varies greatly between subjects. Importantly, our analyses suggest that rhythmic estimates at the single-trial level are reliable within-subject markers, but are not consistently valid descriptors of the individual rhythmic process. Finally, we discuss the utility and potential of rhythm detection, and various implications for single-trial analyses of neural rhythms in electrophysiological recordings.

All Posts
×

Almost done…

We just sent you an email. Please click the link in the email to confirm your subscription!

OKSubscriptions powered by Strikingly